Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260314

RESUMO

Background: Mechanosensation is an important trigger of physiological processes in the gastrointestinal tract. Aberrant responses to mechanical input are associated with digestive disorders, including visceral hypersensitivity. Transient Receptor Potential Vanilloid 4 (TRPV4) is a mechanosensory ion channel with proposed roles in visceral afferent signaling, intestinal inflammation, and gut motility. While TRPV4 is a potential therapeutic target for digestive disease, current mechanistic understanding of how TRPV4 may influence gut function is limited by inconsistent reports of TRPV4 expression and distribution. Methods: In this study we profiled functional expression of TRPV4 using Ca2+ imaging of wholemount preparations of the mouse, monkey, and human intestine in combination with immunofluorescent labeling for established cellular markers. The involvement of TRPV4 in colonic motility was assessed in vitro using videomapping and contraction assays. Results: The TRPV4 agonist GSK1016790A evoked Ca2+ signaling in muscularis macrophages, enteric glia, and endothelial cells. TRPV4 specificity was confirmed using TRPV4 KO mouse tissue or antagonist pre-treatment. Calcium responses were not detected in other cell types required for neuromuscular signaling including enteric neurons, interstitial cells of Cajal, PDGFRα+ cells, and intestinal smooth muscle. TRPV4 activation led to rapid Ca2+ responses by a subpopulation of glial cells, followed by sustained Ca2+ signaling throughout the enteric glial network. Propagation of these waves was suppressed by inhibition of gap junctions or Ca2+ release from intracellular stores. Coordinated glial signaling in response to GSK1016790A was also disrupted in acute TNBS colitis. The involvement of TRPV4 in the initiation and propagation of colonic motility patterns was examined in vitro. Conclusions: We reveal a previously unappreciated role for TRPV4 in the initiation of distension-evoked colonic motility. These observations provide new insights into the functional role of TRPV4 activation in the gut, with important implications for how TRPV4 may influence critical processes including inflammatory signaling and motility.

2.
Cell Mol Gastroenterol Hepatol ; 16(4): 573-605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355216

RESUMO

BACKGROUND AND AIMS: Gut functions including motility, secretion, and blood flow are largely controlled by the enteric nervous system. Characterizing the different classes of enteric neurons in the human gut is an important step to understand how its circuitry is organized and how it is affected by disease. METHODS: Using multiplexed immunohistochemistry, 12 discriminating antisera were applied to distinguish different classes of myenteric neurons in the human colon (2596 neurons, 12 patients) according to their chemical coding. All antisera were applied to every neuron, in multiple layers, separated by elutions. RESULTS: A total of 164 combinations of immunohistochemical markers were present among the 2596 neurons, which could be divided into 20 classes, with statistical validation. Putative functions were ascribed for 4 classes of putative excitatory motor neurons (EMN1-4), 4 inhibitory motor neurons (IMN1-4), 3 ascending interneurons (AIN1-3), 6 descending interneurons (DIN1-6), 2 classes of multiaxonal sensory neurons (SN1-2), and a small, miscellaneous group (1.8% of total). Soma-dendritic morphology was analyzed, revealing 5 common shapes distributed differentially between the 20 classes. Distinctive baskets of axonal varicosities surrounded 45% of myenteric nerve cell bodies and were associated with close appositions, suggesting possible connectivity. Baskets of cholinergic terminals and several other types of baskets selectively targeted ascending interneurons and excitatory motor neurons but were significantly sparser around inhibitory motor neurons. CONCLUSIONS: Using a simple immunohistochemical method, human myenteric neurons were shown to comprise multiple classes based on chemical coding and morphology and dense clusters of axonal varicosities were selectively associated with some classes.


Assuntos
Sistema Nervoso Entérico , Plexo Mientérico , Humanos , Sistema Nervoso Entérico/metabolismo , Neurônios Aferentes/metabolismo , Neurônios Motores/metabolismo , Colo/inervação
3.
Am J Physiol Gastrointest Liver Physiol ; 325(1): G62-G79, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37162180

RESUMO

Patients with irritable bowel syndrome (IBS) have recurrent lower abdominal pain, associated with altered bowel habit (diarrhea and/or constipation). As bowel habit is altered, abnormalities in colonic motility are likely to contribute; however, characterization of colonic motor patterns in patients with IBS remains poor. Utilizing fiber-optic manometry, we aimed to characterize distal colonic postprandial colon motility in diarrhea-predominant IBS. After an overnight fast, a 72-sensor (spaced at 1-cm intervals) manometry catheter was colonoscopically placed to the proximal colon, in 13 patients with IBS-D and 12 healthy adults. Recordings were taken for 2 h pre and post a 700 kcal meal. Data were analyzed with our two developed automated techniques. In both healthy adults and patients with IBS-D, the dominant frequencies of pressure waves throughout the colon are between 2 and 4 cycles per minute (cpm) and the power of these frequencies increased significantly after a meal. Although these pressure waves formed propagating contractions in both groups, the postprandial propagating contraction increase was significantly smaller in patients compared with healthy adults. In healthy adults during the meal period, retrograde propagation between 2 and 8 cpm was significantly greater than antegrade propagation at the same frequencies. This difference was not observed in IBS-D. Patients with IBS-D show reduced prevalence of the retrograde cyclic motor pattern postprandially compared with the marked prevalence in healthy adults. We hypothesize that this reduction may allow premature rectal filling, leading to postprandial urgency and diarrhea.NEW & NOTEWORTHY Compared with healthy adults this study has shown a significant reduction in the prevalence of the postprandial retrograde cyclic motor pattern in the distal colon of patients with diarrhea-predominant irritable bowel syndrome. We hypothesize that this altered motility may allow for premature rectal filling which contributes to the postprandial urgency and diarrhea experienced by these patients.


Assuntos
Síndrome do Intestino Irritável , Adulto , Humanos , Colo , Constipação Intestinal , Diarreia , Reto , Período Pós-Prandial , Motilidade Gastrointestinal
4.
J Appl Physiol (1985) ; 134(1): 160-171, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36476157

RESUMO

The study aimed to determine the impact of exercise duration on gastrointestinal functional responses and gastrointestinal symptoms (GISs) in response to differing exercise durations. Endurance runners (n = 16) completed three trials on separate occasions, randomized to 1 h (1-H), 2 h (2-H), and 3 h (3-H) of running at 60% V̇o2max in temperate ambient temperature. Orocecal transit time (OCTT) was determined by lactulose challenge, with concomitant breath hydrogen (H2) determination. Gastric slow wave activity was recorded using cutaneous electrogastrography (cEGG) before and after exertion. GIS was determined using a modified visual analog scale (mVAS). OCTT response was classified as very slow on all trials (∼93-101 min) with no trial difference observed (P = 0.895). Bradygastria increased postexercise on all trials (means ± SD: 1-H: 10.9 ± 11.7%, 2-H: 6.2 ± 9.8%, and 3-H: 13.2 ± 21.4%; P < 0.05). A reduction in the normal gastric slow wave activity (2-4 cycles/min) was observed postexercise on 1-H only (-10.8 ± 17.6%; P = 0.039). GIS incidence and gut discomfort was higher on 2-H (81% and 12 counts) and 3-H (81% and 18 counts), compared with 1-H (69% and 6 counts) (P = 0.038 and P = 0.006, respectively). Severity of gut discomfort, total-GIS, upper-GIS, and lower-GIS increased during exercise on all trials (P < 0.05). Steady-state exercise in temperate ambient conditions for 1 h, 2 h, and 3 h instigates perturbations in gastric slow wave activity compared with rest and hampers OCTT, potentially explaining the incidence and severity on exercise-associated GIS.NEW & NOTEWORTHY Exercise stress per se appears to instigate perturbations to gastric myoelectrical activity, resulting in an increase in bradygastria frequency, inferring a reduction in gastric motility. The perturbations to gastrointestinal functional responses instigated by exercise per se, likely contribute to the high incidence and severity level of exercise-associated gastrointestinal symptoms. Cutaneous electrogastrography is not commonly used in exercise gastroenterology research, however, may be a useful aid in providing an overall depiction of gastrointestinal function. Particularly relating to gastrointestinal motility and concerning gastroparesis.


Assuntos
Líquidos Corporais , Corrida , Trato Gastrointestinal , Exercício Físico/fisiologia , Eletromiografia
5.
J Sci Med Sport ; 25(12): 960-967, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36347748

RESUMO

OBJECTIVES: Exertional-heat stress generates a thermoregulatory strain that exacerbates splanchnic hypoperfusion and sympathetic drive, but the effects on gastrointestinal function are poorly defined. The study aimed to determine the effects of exertional-heat stress on gastric myoelectrical activity, orocecal transit time (OCTT), and gastrointestinal symptoms (GIS). DESIGN: Randomised cross-over study. METHODS: Endurance runners (n = 16) completed 2 h of running at 60 % V̇O2max in 35 °C (HOT) and 22 °C (TEMP) ambient conditions. Surface electrogastrography (cEGG) was recorded pre- and post-exercise to determine gastric myoelectrical activity, a lactulose challenge was used to determine OCTT, and GIS were recorded using a modified visual analogue scale tool. RESULTS: Post-exercise Tre [HOT:38.8(38.5 to 39.0)°C and TEMP:38.1(37.8 to 38.4)°C] and Δ Tre [HOT:2.2(2.0 to 2.4)°C and TEMP:1.5(1.2 to 1.8)°C] was higher on HOT compared to TEMP (p < 0.001). Normal gastric myoelectrical cycle frequency reduced (p = 0.010) on HOT [-11.7(-20.8 to -2.6)%], but this decrease did not differ (p = 0.058) from TEMP [-2.7(-8.3 to 3.0)%]. Bradygastria increased post-exercise on both trials (HOT:11.3(2.3 to 20.4)%, p = 0.030; and TEMP:7.4(2.1 to 12.6)%, p = 0.009). OCTT did not differ between trials (p = 0.864) with transit response classified as very slow on both HOT (99(68 to 131)min) and TEMP (98(74 to 121)min). GIS incidence was higher on HOT (88 %) compared to TEMP (81 %), in accordance with greater total-GIS and upper-GIS severity (p = 0.005 and p = 0.033, respectively). CONCLUSIONS: Running for 2 h at 60 % V̇O2max in either hot or temperate ambient conditions instigates perturbations in myoelectrical activity and OCTT, with GIS incidence and severity greater in hot conditions.


Assuntos
Gastroenteropatias , Transtornos de Estresse por Calor , Humanos , Regulação da Temperatura Corporal , Estudos Cross-Over , Temperatura Alta
6.
Commun Biol ; 5(1): 915, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104503

RESUMO

Our understanding of how abdominal organs (like the gut) communicate with the brain, via sensory nerves, has been limited by a lack of techniques to selectively activate or inhibit populations of spinal primary afferent neurons within dorsal root ganglia (DRG), of live animals. We report a survival surgery technique in mice, where select DRG are surgically removed (unilaterally or bilaterally), without interfering with other sensory or motor nerves. Using this approach, pain responses evoked by rectal distension were abolished by bilateral lumbosacral L5-S1 DRG removal, but not thoracolumbar T13-L1 DRG removal. However, animals lacking T13-L1 or L5-S1 DRG both showed reduced pain sensitivity to distal colonic distension. Removal of DRG led to selective loss of peripheral CGRP-expressing spinal afferent axons innervating visceral organs, arising from discrete spinal segments. This method thus allows spinal segment-specific determination of sensory pathway functions in conscious, free-to-move animals, without genetic modification.


Assuntos
Encéfalo , Gânglios Espinais , Animais , Colo , Gânglios Espinais/metabolismo , Camundongos , Dor
7.
Neurogastroenterol Motil ; 34(11): e14442, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054796

RESUMO

BACKGROUND: In most animal species, opioids alter colonic motility via the inhibition of excitatory enteric motor neurons. The mechanisms by which opioids alter human colonic motility are unclear. The aim of this study was to describe the effects of loperamide on neuromuscular function in the human colon. METHODS: Tissue specimens of human colon from 10 patients undergoing an anterior resection were divided into three inter-taenial circular muscle strips. Separate organ baths were used to assess: (1) excitatory transmission (selective blockade of inhibitory transmission: L-NOARG/MRS2179); (2) inhibitory transmission (selective blockade of excitatory transmission: hyoscine hydrobromide); and (3) a control bath (no drug additions). Neuromuscular function was assessed using force transducer recordings and electrical field stimulation (EFS; 20 V, 10 Hz, 0.5 ms, 10 s) prior to and following loperamide and naloxone. KEY RESULTS: In human preparations with L-NOARG/MRS2179, loperamide had no significant effects on isometric contractions. In preparations with hyoscine hydrobromide, loperamide reduced isometric relaxation during EFS (median difference + 0.60 g post-loperamide, Z = -2.35, p = 0.019). CONCLUSIONS AND INFERENCES: Loperamide had no effect on excitatory neuromuscular function in human colonic circular muscle. These findings suggest that loperamide alters colonic function by acting primarily on inhibitory motor neurons, premotor enteric neurons, or via alternative non-opioid receptor pathways.


Assuntos
Loperamida , Escopolamina , Animais , Colo , Estimulação Elétrica , Motilidade Gastrointestinal , Humanos , Loperamida/farmacologia , Contração Muscular/fisiologia , Naloxona/farmacologia , Nitroarginina/farmacologia , Escopolamina/farmacologia
8.
Am J Gastroenterol ; 117(7): 1125-1136, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35435855

RESUMO

INTRODUCTION: Although the association of absent or attenuated "call to stool" with constipation is well-recognized, no studies have systematically evaluated the perception of urge to defecate in a well-defined cohort of patients with chronic constipation (CC). METHODS: A prospective study of 43 healthy adult women and 140 consecutive adult women attending a tertiary center for investigation of CC. All participants completed a 5-day viscerosensory questionnaire, and all women with CC also underwent anorectal physiologic investigations. Normal urge perception and abnormal urge perception were defined using a Naive Bayes model trained in healthy women (95% having normal urge). RESULTS: In total, 181 toilet visits in healthy women and 595 in women with CC were analyzed. Abnormal urge perception occurred in 70 (50.0%) women with CC. In this group, the urge to defecate was more often experienced as abdominal sensation (69.3% vs 41.4%; P < 0.0001), and the viscerosensory referral area was 81% larger (median pixels anterior: 1,849 vs 1,022; P < 0.0001) compared to women with CC and normal urge perception. Abnormal (vs normal) urge in women with CC was associated with more severe constipation (Cleveland Clinic constipation score: 19 vs 15 P < 0.0001), irritable bowel syndrome (45.7% vs 22.9% P < 0.0001), and a functional evacuation disorder on defecography (31.3% vs 14.3% P = 0.023). A distinct pattern of abnormal urge was found in women with CC and rectal hyposensitivity. DISCUSSION: Abnormal urge perception was observed in 50% of women with CC and was frequently described as abdominal sensation, supporting the concept that sensory dysfunction makes an important contribution to the pathophysiology of constipation.


Assuntos
Constipação Intestinal , Defecação , Adulto , Teorema de Bayes , Defecação/fisiologia , Feminino , Humanos , Masculino , Manometria , Percepção , Estudos Prospectivos , Reto
9.
Front Neurosci ; 16: 863662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368277

RESUMO

Background: The sympathetic nervous system inhibits human colonic motility largely by effects on enteric neurons. Noradrenergic axons, which branch extensively in the myenteric plexus, are integral to this modulatory role, but whether they contact specific types of enteric neurons is unknown. The purpose of this study was to determine the association of noradrenergic varicosities with types of enteric neurons. Methods: Human colonic tissue from seven patients was fixed and dissected prior to multi-layer immunohistochemistry for human RNA binding proteins C and D (HuC/D) (pan-neuronal cell body labelling), tyrosine hydroxylase (TH, catecholaminergic labelling), Enkephalin (ENK), choline acetyltransferase (ChAT, cholinergic labelling) and/or nitric oxide synthase (NOS, nitrergic labelling) and imaged using confocal microscopy. TH-immunoreactive varicose nerve endings and myenteric cell bodies were reconstructed as three dimensional digital images. Data was exported to a purpose-built software package which quantified the density of varicosities close to the surface of each myenteric cell body. Results: TH-immunoreactive varicosities had a greater mean density within 1 µm of the surface of ChAT +/NOS- nerve cell bodies compared with ChAT-/NOS + cell bodies. Similarly, ENK-immunoreactive varicosities also had a greater mean density close to ChAT +/NOS- cell bodies compared with ChAT-/NOS + cells. Conclusion: A method for quantifying close associations between varicosities and nerve cell bodies was developed. Sympathetic axons in the myenteric plexus preferentially target cholinergic excitatory cells compared to nitrergic neurons (which are largely inhibitory). This connectivity is likely to be involved in inhibitory modulation of human colonic motility by the sympathetic nervous system.

10.
Neurogastroenterol Motil ; 34(1): e14178, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34076936

RESUMO

BACKGROUND: The colonic motor patterns associated with gas transit are poorly understood. This study describes the application of high-resolution impedance manometry (HRiM) in the human colon in vivo to characterize distal colonic motility and gas transit; (a) after a meal and (b) after intraluminal gas insufflation into the sigmoid colon. METHODS: HRiM recordings were performed in 19 healthy volunteers, with sensors positioned from the distal descending colon to the proximal rectum. Protocol 1 (n = 10) compared pressure and impedance prior to and after a meal. Protocol 2 (n = 9) compared pressure and impedance before and after gas insufflation into the sigmoid colon (60 mL total volume). KEY RESULTS: Both the meal and gas insufflation resulted in an increase in the prevalence of the 2-8/minute "cyclic motor pattern" (meal: (t(9) = -6.42, P<0.001); gas insufflation (t(8) = -3.13, P = 0.01)), and an increase in the number of antegrade and retrograde propagating impedance events (meal: Z = -2.80, P = 0.005; gas insufflation Z = -2.67, P = 0.008). Propagating impedance events temporally preceded antegrade and retrograde propagating contractions, representing a column of luminal gas being displaced ahead of a propagating contraction. Three participants reported an urge to pass flatus and/or flatus during the studies. CONCLUSIONS AND INFERENCES: Initiation of the 2-8/minute cyclic motor pattern in the distal colon occurs both following a meal and/or as a localized sensorimotor response to gas. The near-absence of a flatal urge and the temporal association between propagating contractions and gas transit supports the hypothesis that the 2-8/minute cyclic motor pattern acts as a physiological "brake" modulating rectal filling.


Assuntos
Colo/fisiologia , Motilidade Gastrointestinal/fisiologia , Trânsito Gastrointestinal/fisiologia , Manometria/métodos , Adulto , Idoso , Impedância Elétrica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
11.
J Physiol ; 599(20): 4561-4579, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418078

RESUMO

Soft faecal material is transformed into discrete, pellet-shaped faeces at the colonic flexure. Here, analysis of water content in natural faecal material revealed a decline from cecum to rectum without significant changes at the flexure. Thus, pellet formation is not explained by changes in viscosity alone. We then used video imaging of colonic wall movements with electromyography in isolated preparations containing guinea-pig proximal colon, colonic flexure and distal colon. To investigate the pellet formation process, the colonic segments were infused with artificial contents (Krebs solution and 4-6% methylcellulose) to simulate physiological faecal content flow. Remarkably, pellet formation took place in vitro, without extrinsic neural inputs. Infusion evoked slowly propagating neurogenic contractions, the proximal colon migrating motor complexes (∼0.6 cpm), which initiated pellet formation at the flexure. Lesion of the flexure, but not the proximal colon, disrupted the formation of normal individual pellets. In addition, a distinct myogenic mechanism was identified, whereby slow phasic contractions (∼1.9 cpm) initiated at the flexure and propagated short distances retrogradely into the proximal colon and antegradely into the distal colon. There were no detectable changes in the density or distribution of pacemaker-type interstitial cells of Cajal across the flexure. The findings provide new insights into how solid faecal content is generated, suggesting the major mechanisms underlying faecal pellet formation involve the unique interaction at the colonic flexure between antegrade proximal colon migrating motor complexes, organized by enteric neurons, and retrograde myogenic slow phasic contractions. Additional, as yet unidentified extrinsic and/or humoral influences appear to contribute to processing of faecal content in vivo. KEY POINTS: In herbivores, including guinea-pigs, clearly defined faecal pellets are formed at a distinct location along the large intestine (colonic flexure). The mechanism underlying the formation of these faecal pellets at this region has remained unknown. We reveal a progressive and gradual reduction in water content of faecal content along the bowel. Hence, the distinct transition from amorphous to pellet shaped faecal content could not be explained by a dramatic increase in water reabsorption from a specific site. We discovered patterns of anterograde neurogenic and retrograde myogenic motor activity that facilitate the formation of faecal pellets. The formation of 'pellet-like' boluses at the colonic flexure involves interaction of an antegrade migrating motor complex in the proximal colon and retrograde myogenic slow phasic contractions that emerge from the colonic flexure. The findings uncover intrinsic mechanisms responsible for the formation of discrete faecal scybala in the large intestine of a vertebrate.


Assuntos
Motilidade Gastrointestinal , Complexo Mioelétrico Migratório , Animais , Colo , Fezes , Cobaias , Intestino Grosso
12.
Commun Biol ; 4(1): 955, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376798

RESUMO

How the Enteric Nervous System (ENS) coordinates propulsion of content along the gastrointestinal (GI)-tract has been a major unresolved issue. We reveal a mechanism that explains how ENS activity underlies propulsion of content along the colon. We used a recently developed high-resolution video imaging approach with concurrent electrophysiological recordings from smooth muscle, during fluid propulsion. Recordings showed pulsatile firing of excitatory and inhibitory neuromuscular inputs not only in proximal colon, but also distal colon, long before the propagating contraction invades the distal region. During propulsion, wavelet analysis revealed increased coherence at ~2 Hz over large distances between the proximal and distal regions. Therefore, during propulsion, synchronous firing of descending inhibitory nerve pathways over long ranges aborally acts to suppress smooth muscle from contracting, counteracting the excitatory nerve pathways over this same region of colon. This delays muscle contraction downstream, ahead of the advancing contraction. The mechanism identified is more complex than expected and vastly different from fluid propulsion along other hollow smooth muscle organs; like lymphatic vessels, portal vein, or ureters, that evolved without intrinsic neurons.


Assuntos
Sistema Nervoso Entérico/fisiologia , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Animais , Colo/inervação , Colo/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/inervação
13.
Am J Physiol Gastrointest Liver Physiol ; 321(3): G325-G334, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34231391

RESUMO

Bisacodyl is a stimulant laxative often used in manometric studies of pediatric constipation to determine if it can initiate propulsive high-amplitude propagating contractions (HAPCs). Whereas the effects of bisacodyl infusion on colonic motility are well described, the effects of the drug on other regions of the gut after colonic infusion are not known. The aim of the present study was to characterize the effects of bisacodyl on both colonic and small bowel motility. Twenty-seven children (9.3 ± 1.2 yr) undergoing simultaneous high-resolution antroduodenal and colonic manometry were included. Small bowel and colonic motor patterns were assessed before and after colonic infusion of bisacodyl. Patients were divided into two groups: responders and nonresponders based on the presence of high-amplitude propagating contractions (HAPCs) after bisacodyl infusion. Nineteen patients were responders. A total of 188 postbisacodyl HAPCs was identified with a mean count of 10.4 ± 5.5 (range, 3-22), at a frequency of 0.6 ± 0.2/min and mean amplitude of 119.8 ± 23.6 mmHg. No motor patterns were induced in the small bowel. However, in the 19 responders the onset of HAPCs was associated with a significant decrease in small bowel contractile activity. In the nonresponders, there was no detectable change in small bowel motility after bisacodyl infusion. Bisacodyl-induced HAPCs are associated with a significant reduction in small bowel motility probably mediated by extrinsic sympathetic reflex pathways. This inhibition is potentially related to rectal distension, caused by the HAPC anal propulsion of colonic content.NEW & NOTEWORTHY The present study has shown, for the first time, that the presence of high-amplitude propagating contractions induced by bisacodyl is associated with a significant reduction in small bowel motility. These findings support of possible existence of a reflex pathway that causes inhibition of small bowel motility in response to rectal distension.


Assuntos
Bisacodil/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Colo/efeitos dos fármacos , Constipação Intestinal/tratamento farmacológico , Duodeno/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia , Humanos , Laxantes/uso terapêutico , Contração Muscular/fisiologia , Doenças da Bexiga Urinária/tratamento farmacológico
14.
Neurogastroenterol Motil ; 33(7): e14098, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33586835

RESUMO

BACKGROUND: In herbivores, the proximal and distal colonic regions feature distinct motor patterns underlying formation and propulsion of fecal pellets, respectively. Omnivores, such as mice and humans, lack a similar clear anatomical transition between colonic regions. We investigated whether distinct processes form and propel content along the large intestine of a mouse (an omnivore). METHODS: We recorded propulsive and non-propulsive neurogenic motor activity in mouse large intestine under six different stimulus conditions of varying viscosities. Gut wall movements were recorded by video and smooth muscle electrical behavior recorded with extracellular suction electrodes. KEY RESULTS: Three major neurally mediated motor patterns contributed to pellet formation and propulsion. (1) Pellet-shaped boluses are pinched off near the ceco-colonic junction and slowly propelled distally to a transition located at 40% length along the colon. (2) At this functional colonic flexure, propulsion speed is significantly increased by self-sustaining neural peristalsis. Speed transition at this location also occurs with artificial pellets and with spontaneously formed boluses in the empty colon. (3) Periodic colonic motor complexes (CMCs) were present in all conditions reaching a maximal frequency of about 0.4 cpm and extending across the proximal and distal colon with faster speed of propagation. CONCLUSIONS AND INFERENCES: The three motor patterns share a unique underlying fundamental property of the enteric circuits, which involve extended ensembles of enteric neurons firing at close to 2 Hz. The demonstration of distinct functional differences between proximal and distal colon in rabbit, guinea pig, and now mouse raises the possibility that this may be an organizational principle in other mammalian species, including humans.


Assuntos
Colo/fisiologia , Fezes , Motilidade Gastrointestinal/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/fisiologia
15.
Neurogastroenterol Motil ; 33(5): e14037, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33340207

RESUMO

BACKGROUND: Fish are increasingly being utilized as a model species for genetic manipulation studies related to gastrointestinal (GI) motility. Our aim was to identify whether patterns of GI motility in fish and the mechanisms underlying their generation are similar to those recorded from mammals (including humans). METHODS: The entire intestine was removed from euthanized adult Silver Perch (n = 11) and lesioned at the midway point to obtain two equal lengths. Proximal and distal segments were studied separately in organ baths with oxygenated Krebs solution, maintained at either 15°C (n = 5) or 25°C (n = 6). Motility was analyzed during rest, after oral infusion of Krebs solution, and after application of hexamethonium (100 µM) and tetrodotoxin (TTX) (0.6 µM). KEY RESULTS: Antegrade and retrograde propagating contractions (PC) were recorded in all preparations. In the proximal intestine, at 15 and 25°C, retrograde PCs occurred at 2.7 [1.7-4.5] and 3.1 [1.6-6.5] times the frequency of antegrade PCs, respectively. Colder temperatures did not inhibit PC frequency. Hexamethonium did not inhibit PC, and however, TTX abolished all contractile activity. CONCLUSIONS AND INFERENCES: Both neurogenic antegrade and retrograde propagating contractions occur throughout the intestine of Silver Perch. However, unlike the mammalian colon, these motor patterns do not require enteric nicotinic transmission and they are not inhibited by cold temperatures (15°C). Therefore, while the GI motility patterns in Silver Perch resemble those recorded from the colon of mammals, there may be differences in the mechanisms that underlying their generation.


Assuntos
Temperatura Baixa , Motilidade Gastrointestinal/fisiologia , Intestinos/fisiologia , Percas/fisiologia , Animais , Motilidade Gastrointestinal/efeitos dos fármacos , Hexametônio/farmacologia , Intestinos/efeitos dos fármacos , Soluções Isotônicas , Antagonistas Nicotínicos/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Temperatura , Tetrodotoxina/farmacologia
16.
Colorectal Dis ; 23(2): 444-450, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33342038

RESUMO

AIM: Conventional parameters (anal resting and squeeze pressures) measured with anorectal manometry (ARM) fail to identify anal sphincter dysfunction in many patients with low anterior resection syndrome (LARS). We aimed to assess whether there are differences in anal canal slow-wave pressure activity in LARS patients and healthy individuals. METHOD: High-resolution ARM (HR-ARM) traces of 21 consecutive male LARS patients referred to the Royal London Hospital, UK (n = 12) and Aarhus University Hospital, Denmark (n = 9) were compared with HR-ARM data from 37 healthy men. RESULTS: Qualitatively (by visual inspection of HR-ARM recordings), the frequency of slow-wave pressure activity was strikingly different in 11/21 (52.4%) LARS patients from that observed in all the healthy individuals. Quantitative analysis showed that peaks of the mean spectrum in these 11 LARS patients occurred at approximately 6-7 cycles per minute (cpm), without activity at higher frequencies. An equivalent pattern was found in only 2/37 (5.4%) healthy individuals (P < 0.0001). Peaks of the mean spectrum in healthy individuals were concentrated at 16 cpm and 3-4 cpm. CONCLUSION: Over half of the male LARS patients studied had altered anal slow-wave pressure activity based on analysis of HR-ARM recordings. Further studies could investigate the relative contributions of sex, human baseline variance and neoadjuvant/surgical therapies on anal slow waves, and correlate the presence of abnormal activity with symptom severity.


Assuntos
Incontinência Fecal , Neoplasias Retais , Canal Anal/cirurgia , Humanos , Masculino , Manometria , Complicações Pós-Operatórias , Síndrome
17.
Neurogastroenterol Motil ; 33(5): e14047, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33252184

RESUMO

BACKGROUND: Colonic motor complexes (CMCs) have been widely recorded in the large intestine of vertebrates. We have investigated whether in the smooth muscle, a single unified pattern of electrical activity, or different patterns of electrical activity give rise to the different neurogenic patterns of motility underlying CMCs in vitro. METHODS: To study differences of the CMCs between proximal and distal colon, we used a novel combination of techniques to simultaneously record muscle diameter and force at multiple sites along the whole mouse colon ex vivo. In addition, electrical activity of smooth muscle was recorded by suction electrodes. KEY RESULTS: Two distinct types of CMCs were distinguished; CMCs that propagated along the entire colon (complete CMC) and CMCs which were restricted to the proximal colon (incomplete CMC). The two types of CMC often occurred in the same preparations. Incomplete CMCs had longer bursts of smooth muscle action potentials than complete CMCs and propagated more slowly. Interestingly, both types of CMC were associated with similar frequency bursts of smooth muscle action potentials at ~2.4 Hz. In the most proximal colon, an additional firing frequency was detected close to ~7 Hz generating multiple peaks within each CMC. CONCLUSIONS & INFERENCES: We report distinct characteristics underlying complete and incomplete CMCs in isolated mouse colon. Recognizing these distinct patterns of motility will be important for future interpretation of analysis of murine colonic motility recordings. The identification of alternating patterns of motor activity in proximal colon, but not distal colon may reflect specific neural mechanisms for fecal pellet formation.


Assuntos
Potenciais de Ação/fisiologia , Colo/fisiologia , Músculo Liso/fisiologia , Complexo Mioelétrico Migratório/fisiologia , Animais , Motilidade Gastrointestinal/fisiologia , Camundongos
18.
EClinicalMedicine ; 27: 100572, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33150331

RESUMO

BACKGROUND: In contrast to paediatric and geriatric populations, faecal incontinence and constipation in adults are generally considered separate entities. This may be incorrect. METHODS: Cross-sectional study of consecutive patients (18-80 years) referred to a tertiary unit (2004-2016) for investigation of refractory faecal incontinence and/or constipation and meeting Rome IV core criteria (applied post-hoc) for self-reported symptoms. We sought to determine how frequently both diagnoses coexisted, how frequently coexistent diagnoses were recognised by the referring clinician and to evaluate differences in clinical characteristics between patients with single or both diagnoses. FINDINGS: Study sample consisted of 4,027 patients (3,370 females [83·7%]). According to Rome IV criteria, 807 (20·0%) patients self-reported faecal incontinence in isolation, 1,569 (39·0%) patients had functional constipation in isolation, and 1,651 (41·0%) met criteria for both diagnoses (coexistent symptoms). In contrast, only 331 (8·2%) patients were referred for coexistent symptoms. Of the 1,651 patients with self-reported coexistent symptoms, only 225 (13·6%) were recognised by the referrer i.e. 86·4% were missed. Coexistent symptoms were most often missed in patients referred for faecal incontinence in isolation. In this group of 1,640 patients, 765 (46·7%) had concomitant symptoms of functional constipation. Opioid usage, comorbidities, childhood bowel problems, mixed incontinence symptoms, prolapse symptoms and structural abnormalities on defaecography were associated with reclassification. INTERPRETATION: Over 40% of adults referred for anorectal physiological investigation had coexistent diagnoses of faecal incontinence and functional constipation, based on validated criteria. This overlap is overlooked by referrers, poorly documented in current literature, and may impact management.

19.
Front Cell Neurosci ; 14: 215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848615

RESUMO

A class of Group III muscle afferent neurons has branching sensory terminals in the connective tissue between layers of mouse abdominal muscles ("CT3 muscle afferents"). These sensory endings are both mechanosensitive and metabosensitive. In the present study, responses of CT3 afferents to lactate ions and changes in temperature were recorded. Raising muscle temperature from 32.7°C to 37°C had no consistent effects on CT3 afferent basal firing rate or responses to either von Frey hair stimulation or to an applied load. Superfusion with lactate ions (15 mM, pH 7.4) was associated with an increase in firing from 6 ± 0.7 Hz to 11.7 ± 6.7 Hz (14 units, n = 13, P < 0.05, P = 0.0484) but with considerable variability in the nature and latency of response. Reducing the concentration of extracellular divalent cations, which mimicked the chelating effects of lactate, did not increase firing. Raised concentrations of divalent cations (to compensate for chelation) did not block excitatory effects of lactate on CT3 afferents, suggesting that effects via ASIC3 were not involved. Messenger RNA for the G-protein coupled receptor, hydroxyl carboxylic acid receptor 1 (HCAR1) was detected in dorsal root ganglia and HCAR1-like immunoreactivity was present in spinal afferent nerve cell bodies retrogradely labeled from mouse abdominal muscles. HCAR1-like immunoreactivity was also present in axons in mouse abdominal muscles. This raises the possibility that some effects of lactate on group III muscle afferents may be mediated by HCAR1.

20.
Front Physiol ; 11: 484, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581824

RESUMO

In electrophysiology, many methods have been proposed for the analysis of action potential firing frequencies. The aim of this study was to present an algorithm developed for a continuous wavelet transform that enables the filtering out of frequencies contributing to the shapes of action potentials (spikes), whilst retaining the frequencies that encode the periodicity of spike trains. The continuous wavelet transform allows us to decompose a signal into its constituent frequencies. A signal with a single event, such as a spike, is composed of frequencies that characterize the shape of the spike. A signal with two spikes will also be composed of frequencies characterizing the shape of the action potential, but in addition will include a substantial portion of its power at the frequency corresponding to the time-difference between the two spikes. This is achieved by clipping peaks from the wavelet amplitudes that are narrower than a given minimum number of phase cycles. We present some application examples in both synthetic signals and electrophysiological recordings. This new approach can provide a major new analytical tool for analysis of electrophysiological signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...